达州信息网
推荐

来!立刻加入“推荐系统算法工程师”培养计划

作者: 来源: 时间:2020-10-08

  • 最新
  • 精选
  • 区块链
  • 汽车
  • 创意科技
  • 媒体达人
  • 电影音乐
  • 娱乐休闲
  • 生活旅行
  • 学习工具
  • 历史读书
  • 金融理财
  • 美食菜谱

来!立刻加入“推荐系统算法工程师”培养计划

PaperWeekly PaperWeekly 2020-06-21


由于近些年深度学习技术的飞速发展,大力加速推动了AI在互联网以及传统各个行业的商业化落地,其中,推荐系统、计算广告等领域彰显的尤为明显。由于推荐系统与提升用户量以及商业化变现有着密不可分的联系,各大公司都放出了众多推荐系统相关职位,且薪水不菲,目前发展势头很猛。

 

但是,这里存在几个问题,很多欲从事推荐系统的同学大多数学习的方式是自学,1、往往是学了很多的推荐算法模型,了解些推荐里常用的算法,如:协同过滤、FM、deepFM等,但是却不清楚这些模型在工业界推荐系统中是如何串联、如何配合、有哪些坑,哪些trick的,导致无论面试还是真正去业界做推荐系统,都会被推荐领域的”老枪老炮“们一眼识别出小白属性。2、对于算法原理理解不深刻,这就会导致实际应用时不能很好地将模型的性能发挥出来,另外面试时对于大厂面试官的刨根问底,只能是眼睁睁的丢掉offer。

 

CF、FM、DSSM、DeepFM等这些推荐业界明星模型,你真的清楚他们的内部运行原理以及使用场景吗,逻辑回归为什么用sigmoid函数?有确切的理论推导吗?FM模型与SVM有什么相似之处吗?FM固然可以用作为打分模型,但它可以用来做matching吗,如果可以,如何做?item2Vec模型在业界是如何缓解冷启动的问题的?双塔模型优势在哪?深度模型到底是如何做matching的,是离线计算好结果还是实时的对网络进行前向计算?DeepFM具体实现时,wide端和deep端的优化方式是一样的吗?基于Graph的推荐方法在业界的应用目前是怎样的?基于上述的目的,贪心学院一直坚持跑在技术的最前线,帮助大家不断地成长。



为什么选择贪心学院的推荐系统训练营?


首先,全网不可能找得到另外一门系统性的训练营具备如此的深度和广度,所以从内容的角度来讲是非常稀缺的内容。


其次,即便网络上的资源非常多,学习是需要成本的,而且越有深度的内容越难找到好的学习资源。如果一门课程帮助你清晰地梳理知识体系,而且把有深度的知识点脉络讲清楚,这就是节省最大的成本。


另外,作为一家专注在AI领域的教育科技公司,教研团队的实力在同行业可以算是非常顶尖的,这里不乏顶会的最佳论文作者、美国微软总部推荐系统负责人等大咖。


推荐算法工程师培养计划
专注于培养行业TOP10%的推荐算法工程师

对课程有意向的同学

添加课程顾问小姐姐微信

报名、课程咨询

????????????


推荐算法工程师培养计划
专注于培养行业TOP10%的推荐算法工程师

对课程有意向的同学

添加课程顾问小姐姐微信

报名、课程咨询

????????????

    阅读原文

    前往看一看

    看一看入口已关闭

    在“设置”-“通用”-“发现页管理”打开“看一看”入口

    我知道了

    已发送

    发送到看一看

    发送中

    微信扫一扫
    使用小程序

    取消 允许

    取消 允许

    微信版本过低

    当前微信版本不支持该功能,请升级至最新版本。

    我知道了 前往更新

    确定删除回复吗?

    取消 删除

      知道了

      长按识别前往小程序

      本站仅按申请收录文章,版权归原作者所有
      如若侵权,请联系本站删除

      微信QQ空间新浪微博腾讯微博人人Twitter豆瓣百度贴吧

      觉得不错,分享给更多人看到

      PaperWeekly 热门文章:

      综述 | 知识图谱研究进展    阅读/点赞 : 8410/41

      总结 | 2016年最值得读的自然语言处理领域Paper    阅读/点赞 : 5113/29

      PaperWeekly 第29期 | 你的Emoji不一定是我的Emoji    阅读/点赞 : 1931/24

      新年新服务    阅读/点赞 : 1714/59

      数据开放 | PaperWeekly交流群对话数据    阅读/点赞 : 1680/35

      直播预告 | PaperWeekly Talk 第3期    阅读/点赞 : 1606/21

      用微信控制深度学习训练的Keras插件 - #Geek Time    阅读/点赞 : 1527/32

      PaperWeekly近期计划    阅读/点赞 : 1437/30

      PaperWeekly十期总结    阅读/点赞 : 578/31

      paperweekly 到底是什么?    阅读/点赞 : 420/31

      PaperWeekly 微信二维码

      PaperWeekly 微信二维码

      PaperWeekly 最新文章

      来!立刻加入“推荐系统算法工程师”培养计划  2020-06-21

      ICML 2020 | Google提出最强生成式摘要预训练模型——天马  2020-06-21

      LTP 4.0!单模型完成6项自然语言处理任务  2020-06-21

      如何3天读完并复现一篇经典论文?  2020-06-20

      CVPR 2020 | 反传统的无监督人脸旋转方案:旋转-渲染  2020-06-20

      近期有哪些值得读的推荐系统论文?来看看这份私人阅读清单  2020-06-19

      岗位推荐 | 深圳大学胡瑞珍博士组招收计算机图形学访问硕士/博士  2020-06-19

      搞AI,读这些好书,你就会知道年薪15万和年薪50万的差距!  2020-06-18

      ACL 2020 | 多跳问答的基于对齐的无监督迭代解释检索方法  2020-06-18

      直播 | DSTC 8“基于Schema的对话状态追踪”竞赛冠军方案解读  2020-06-18

      (function(){ var bp = document.createElement('script'); var curProtocol = window.location.protocol.split(':')[0]; if (curProtocol === 'https') { bp.src = 'https://zz.bdstatic.com/linksubmit/push.js'; } else { bp.src = 'http://push.zhanzhang.baidu.com/push.js'; } var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(bp, s); })(); (function(){ var src = (document.location.protocol == "http:") ? "http://js.passport.qihucdn.com/11.0.1.js?ba34c9f41d18b62312e960833b3cb4ae":"https://jspassport.ssl.qhimg.com/11.0.1.js?ba34c9f41d18b62312e960833b3cb4ae"; document.write(''); })();

      1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源; 2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任; 3.作者投稿可能会经我们编辑修改或补充。

      相关文章
      • 周末推荐

      • 1.6L排量 四款省油紧凑型轿车推荐

      • 【电科技独家】天籁K歌推荐歌单——悠扬歌...

      • 祛除祛斑的方法有哪些 为你推荐三款祛斑...

      • 推荐一家在成都犄角旮旯,但是味道可以疯狂...

      • 【NBA赛事】NBA推荐:丹佛掘金vs孟...

      • 夏季护肤品推荐 让你的肌肤喝饱水

      • 怎么锻炼胸大肌 八大快速有效的方法推荐